Bees and other insects are looking for floral rewards, such as nectar and pollen. And they learn to associate a variety of floral cues, including color with such rewards, as three researchers of the University of Arizona – Avery L. Russell, China Rae Newman and Daniel R. Papaj – explain in an article published this year in Evolutionary Ecology (DOI 10.1007/s10682-016-9848-1). Yet, we don’t know much about the ways how insects are learning.
The Arizona project looks for plants with different colors due to a single loss-of-function mutation blocking the production of floral pigments. Similar to the albiflora orchids presented on this web site, such color polymorphisms may also occur in other plant families. The authors explain that those are quite common, for example with Geranium thunbergii, Antennaria dioica or Aquilegia coerulea – a relative to the European Aquilegia vulgaris.
There study analyzes the behavior of pollinators of hypochromic Solanum tridynamum in an experimental arrangement. It could be shown that initially naïve bees had no preference for purple- or white-flowered plants. The same was the case when the researchers prevented the release of pollen – this was done by sealing the anther pore with glue. But bees with a rewarding experience on plants with purple corollas expressed strong, significant landing preferences for morphs with purple corollas relative to morphs with white corollas. This preference to the rewarding color was much weaker in the case of rewarding flowers with white corollas. The authors came to the conclusion: bees showed a bias in terms of how experience shaped preference: experience with the purple morph had a greater effect on preference than experience with the white morph.
The reason for this bias in learning might be, according to the Arizona researchers, that purple flowers exhibit much greater chromatic contrast, so the hypochromic Solanum tridynamum is likely even less discriminable in real-world foraging conditions. Such biases, the authors conclude, might curtail the success of such morphs and perhaps even contribute to the low frequencies in which they occur. The Arizona case study titled White flowers finish last: pollen-foraging bumble bees show biased learning in a floral color polymorphism is great research – there should be others to follow to see if pigmented flowers have an a priori advantage over hypochromic flowers.