Wolfgang Eccarius presents his genus monograph about Dactylorhiza

Die Orchideengattung Dactylorhiza

Following the benchmark books about the genera Anacamptis, Neotinea and Orchis (together with Horst Kretzschmar und Helga Dietrich, 2007) as well as a monograph about the genus Cypripedium (2009), Wolfgang Eccarius now has finished his long lasting work and has published a compendium about the Dactylorhiza orchids.

The book closes a big gap and covers a genus of orchids which is especially rich in species and quite widespread in Europe. As he has established in former publications, the author at first gives a comprehensive introduction before portraying 37 species and 46 subspecies. Eccarius explains his methodological approach and offers a summary of the research history, beginning with the plant book of Otto Brunfels published in 1534. The book abstains from giving a system to identify the species  by morphological indicators. But a tree of the genus structure based on genetical research offers a good overview about the manifold Dactylorhiza orchids and their relations.

In his description, Eccarius has taken some main decisions. He abstains from describing varieties and forms, arguing that those terms are “highly problematic” with Dactylorhiza. “The main goal of the author was a genus structure wich matches logical principles as well as the needs of observations in the field.” He stresses that’s it’s more important to differentiate between the ten sections than defining species: “With Dactylorhiza, sections are much easier to define than species.” For example, the Fuchsiae form a section of their own, together with Dactylorhiza saccifera. The section of Majales comprise Dactylorhiza majalis, Dactylorhiza cordigera and Dactylorhiza elata.

Dactylorhiza majalis subsp. calcifugiens
Photo: Peter Zschunke, 16/06/2012, bei Glæde, Dänemark

It’s comprehensible that Eccarius views Coeloglossum viride as Dactylorhiza viridis. The Viridae are presented as a subgenus, in addition to the subgenus  Dactylorhiza. Other taxonomic decisions are more thought provoking. For example when the yellowish Early Marsh Orchid no longer is a subspecies of Dactylorhiza incarnata, but an own species Dactylorhiza ochroleuca – because there are only very few hybrids between both “which justifies the treatment as a single species in the view of the author”.

Difficult are the explanations about the white flowering Dactylorhiza fuchsii in Ireland, which are elevated by Eccarius to the status of a subspecies – while most experts view the okelly taxon of Dactylorhiza fuchsii as a variety. And the morphological description of the author is not quite helpful in the field: “The subspecies is different by its lower growth” – while the photos show rather high plants. And: “The white color of flowers is shown by whole populations and not only by single plants.”

But this is also valid for Dactylorhiza majalis subsp. calcifugiens, which is presented by Eccarius only as a synonym to Dactylorhiza sphagnicola. The book shows a photo of a plant from the German region of Celle which seems to be an albiflora form of Dactylorhiza sphagnicola, but which is quite different form the calcifugiens population in Northern Denmark.

Quite useful are the explanations about Dactylorhiza maculata, which is presented as a west and northern European species, distributed also in Northern Africa and Northern Asia. The color of flower is described as especially variable, from pure white to a soft and light purple.

Eccarius understands the tendency to a color dimorphism (or polymorphism) which is typical for the genus as functionally relevant. With Dactylorhiza romana, sambucina or incarnata this phenomenon serves as a factor, “to avoid quick learning experiences of polinating insects”. This matches with the regionally different tendency of Dactylorhiza fuchsii to develop albiflora forms.

The new book makes big progress in understanding the Dactylorhiza orchids. But for a full perception there is still a lot of research necessary.

Wolfgang Eccarius legt Gattungsmonographie zu Dactylorhiza vor

Die Orchideengattung Dactylorhiza

Im Anschluss an die Standardwerke zu den Orchideengattungen Anacamptis, Neotinea und Orchis (zusammen mit Horst Kretzschmar und Helga Dietrich, 2007) sowie einer Monographie über die Gattung Cypripedium (2009) hat Wolfgang Eccarius jetzt eine jahrelange Arbeit abgeschlossen und ein Kompendium über die Dactylorhiza-Orchideen vorgelegt.

Das Werk schließt eine große Lücke zu einer besonders artenreichen und in Europa häufigen Orchideengattung. Wie man es von früheren Veröffentlichungen zu schätzen gelernt hat, stellt der Autor den Porträts der 37 Arten und 46 Unterarten eine umfangreiche Einleitung voran. Darin erläutert Eccarius seine Vorgehensweise bei der Abgrenzung von Arten und bietet einen Abriss zur Geschichte der wissenschaftlichen Forschung, angefangen bei dem 1534 erschienenen Kräuterbuch von Otto Brunfels. Das Werk verzichtet zwar auf das Unterfangen, einen Bestimmungsschlüssel zu erstellen. Mit einem Baum der Gattungsstruktur aufgrund gentechnischer Erkenntnisse bietet Eccarius aber einen guten Überblick zur Vielfalt der Dactylorhiza-Orchideen in ihren Verwandtschaftsbeziehungen.

Eccarius hat für seine Darstellung eine Reihe von grundlegenden Entscheidungen getroffen. So verzichtet er auf Varietäten und Formen, weil er diese Begriffe bei Dactylorhiza als “hochproblematisch” ansieht. “Hauptziel des Autors war eine Gattungsstruktur, die sowohl logischen Prinzipien genügt als auch für die Feldarbeit brauchbar ist” Größeres Gewicht als der Abgrenzung von Arten misst er der Unterscheidung von zehn Sektionen bei: “Sektionen lassen sich in der Gattung Dactylorhiza viel leichter voneinander abgrenzen als Arten.” So bilden die Fuchsiae eine eigene Sektion – hierzu gehören Dactylorhiza fuchsii ebenso wie Dactylorhiza saccifera. Die Sektion der Majales umfasst unter anderem Dactylorhiza majalis, Dactylorhiza cordigera und Dactylorhiza elata.

Dactylorhiza majalis subsp. calcifugiens
Photo: Peter Zschunke, 16/06/2012, bei Glæde, Dänemark

Dass Eccarius Coeloglossum viride als Dactylorhiza viridis betrachtet, ist nachvollziehbar. Die Viridae werden hier als Untergattung mit dieser einen Art gezeigt, neben der Untergattung Dactylorhiza. Andere taxonomische Entscheidungen stimmen hingegen nachdenklich. Etwa wenn hier das Strohgelbe Knabenkraut nicht mehr als Unterart von Dactylorhiza incarnata, sondern als eigene Art Dactylorhiza ochroleuca verstanden wird – weil das seltene Auftreten von Hybriden zwischen beiden sehr selten sei, “was nach Ansicht des Autors die Behandlung als eigenständige Art rechtfertigt”.

Weniger hilfreich erscheinen die Ausführungen zu den weiß blühenden Dactylorhiza fuchsii in Irland, die von Eccarius in den Rang einer Subspezies erhoben werden – bislang schien in der Literatur die Einstufung als Varietät mehrheitsfähig zu sein. Die Abgrenzung zu fuchsii ist vor Ort allerdings kaum hilfreich: “Die Unterart unterscheidet sich von der Stammart durch niedrigeren Wuchs” – die Abbildungen dazu zeigen allerdings recht große Pflanzen. “Die weiße Blütenfarbe tritt populationsweise und nicht nur bei Einzelpflanzen auf.”

Genau dies trifft auch auf Dactylorhiza majalis subs. calcifugiens zu, die von Eccarius lediglich als Synonym zu Dactylorhiza sphagnicola aufgeführt wird. Als Foto wird eine Pflanze aus der Umgebung von Celle gezeigt, die wie eine Albiflora-Form von Dactylorhiza sphagnicola erscheint, sich ansonsten aber von der calcifugiens-Population in Nordjütland deutlich unterscheidet.

Ausgesprochen nützlich sind die Ausführungen zu Dactylorhiza maculata, die hier als west- bis nordeuropäische Art präsentiert wird, mit einer Verbreitung auch in Nordafrika und Nordasien. Die Blütenfarbe wird als besonders variabel beschrieben, von reinweiß bis zu zartem Hellviolett.

Eccarius sieht auch die für die Gattung typische Neigung zu einem Farbdimorphismus (oder Polymorphismus) als funktional relevant an. Dieser diene etwa bei Dactylorhiza romana, sambucina und incarnata dazu, “schnelle Lernvorgänge bei den Bestäuberinsekten zu vermeiden”. Hinweise dazu gibt es auch mit der regional unterschiedlichen Neigung von Dactylorhiza fuchsii, Albiflora-Formen zu entwickeln.

Die Neuerscheinung bedeutet einen großen Fortschritt für das Verständnis von Dactylorhiza-Orchideen. Das Buch macht aber auch deutlich, dass weitere Forschungsarbeiten zu dieser Gattung nötig sind.

orchids conference in Sundheim 2: Floral photosynthesis

Why are Ophrys flowers with a defect in pigment production yellowish-greenish and not white as it’s the case with Orchis, Dactylorhiza or other genera? I’ve tried to give an answer to this question at the orchids conference in Sundheim (Germany), in a lecture titled The Ophrys flower – more than an invitation to pseudo copulation.

Ophrys holoserica
Ophrys holoserica

My assumption: The lips of all Ophrys flowers are green – but in most cases we can’t see it, because the chlorophyll in the lips is covered by anthocyanins. Only if the production of anthocyanins is disturbed, the chlorophyll in the Ophrys lip is visible, often together with yellow pigments. Only the marking of the labellum is free of those pigments, it appears in the case of a defect in Anthocyanin production as white. But even in the lower segments of the bluishly shining marking of Ophrys speculum researchers have showed the existence of chloroplasts, of cell plastids with chlorophyll. The bluish color comes from the vacuoles of the epidermis which are filled with cyanidin pigments, while the brown rest of the labellum in addition contains delphinidin, quercetin and anthocyanin pigments.

The Ophrys forms without anthocyanins cannot be termed as white-flowered or albiflora. It makes more sense to call them hypochromic in the meaning of a underdeveloped production of color pigments.

Those forms have been found with more than 20 Ophrys species.

Near the Swiss town of Basel there is a whole population of Ophrys apifera plants without anthocyanins in the labellum. Those plants have been described as Ophrys apifera var. basiliensis.

Anthocyanins also acts as a sun protection. They have the ability to absorb damaging light energy as UV UV radiation. The water-soluble anthocyanin pigments are in the vacuoles of the plant cell, which also contain water and nutrients. This protective function of the pigment is especially important for plants in Southern Europe.

In general, the petals of flowering plants don’t have chlorophyll. The tissue of their flowers and fruits don’t have chloroplasts (those cell parts which contain chlorophyll and therefore are green), but chromoplasts. Those don’t have chlorophyll, but for example carotenoids: yellow, orange or red color pigments.

Only in the early bud stadium some flower plants still have some amounts of chloroplasts – later, those develop to chromoplasts or colorless leucoplasts with the function to store proteins or starch – this process has been explored in an interesting report by Kevin Pyke and Anton Page. The same transformation can be observed when tomatoes are ripening – the fruit is green at first, with many chloroplasts and chlorophyll, which later change to chromoplasts with the red lycopene pigment.

The cells of green leaves have about 20 to 50 chloroplasts with chlorophyll. They are filled with stroma, which also contains the enzyme Ribulose-Bisphosphat-Carboxylase/Oxygenase (RuBisCo). Together with water and sun light, this enzyme has a decisive role in transforming carbon dioxide in glucose: from CO2 and H2O to C6H12O6.

Studies have demonstrated that orchids of sunny meadows in the Mediterranean can be viewed as mycoheterotrophic: They get at least a part of their nutrients from fungi. Since fungi can dissolve the nitrogen (which is important to produce enzymes) of the soil much better than higher developed plants, mycoheterotrophic orchids have a better nitrogen supply than other plants without this special relationship. The different orchid species have different relationships with fungi, but many orchids rely on fungi of the genus Tulasnella.

Additionally, Ophrys orchids make use of the fact, that they have chloroplasts in their flower tissue, so photosynthesis becomes possible in the flower. Some Ophrys species also have intense green petals – in contrast to the labellum there are no anthocyanins in these petals which would otherwise cover the chlorophyll.

It can be assumed that Ophrys flowers make use of the Crassulacean Acid Metabolism (CAM). This mechanism of photosynthesis, named after the family of the Crassulaceae, is especially adapted to hot and dry places.

The advantage of this CAM photosynthesis compared with the standard C3 photosynthesis: The plant cells receive carbon dioxide at night. Then, the stomata of the plant tissue are open. In the daily heat they can be closed, so the plant is protected from dehydration. The CO2 received by night is stored in the vacuoles of the cell in form of malic acid. By day, it will be transformed to carbon dioxide and oxygen by the help of light energy. The CAM photosynthesis only needs less than a fifth of the water amount which is normally necessary in the case of C3 photosynthesis. Therefore, the plant can survive in dry times and is protected against lack of water.

cam_photosynthese_nacht

Einfaches RGB

There are also plants with a facultative CAM photosynthesis: the water saving mode will only be used in dry summer times. In spring, the budding plants still use the C3 photosynthesis. While CAM has the advantage of a lesser water consumption it also has a big disadvantage: The production of biomass is quite lower. CAM plants grow much slower than C3 plants.

Most orchids with thin leaves use a C3 photosynthesis. Among them are the genera Orchis, Dactylorhiza, Anacamptis and Neotinea. Those with thick leaves can master CAM photosynthesis, for example the tropical genera Phalaenopsis, Cymbidium or Cattleya.

Since CAM plants have to store CO2 by night in order to enable the daily photosynthesis, they have enlarged vacuoles. Thick leaves can store more organic acid which conserves CO2 in night time. It may well be that this is also the case with the floral photosynthesis of Ophrys. One clear sign is the thick Ophrys labellum – the form which also has its special function to imitate female pollinators to induce pseudo copulation. The often low height of Ophrys is an additional sign that those species are at least facultative CAM plants, since there is less biomass produced.

An advantage of the floral photosynthesis is the ideal position of flowers to the sun light. The higher amount of light energy absorbed enables a higher capacity to store CO2. Though there is no detailed research yet, there are many signs that especially the Mediterranean Ophrys master a floral photosynthesis. The CAM metabolism enables them to survive in dry climates, on rock grounds, with early withering leaves. The evolution of the Ophrys labellum fulfilled two functions: the adaption to pollinators and the ability of floral photosynthesis.

A cycle of vegetation becomes visible which determines the life of Ophrys. There are four phases which are adapted to specific environment conditions and biological demands:

ophrys_phasen

The seedling is developing under conditions of a mycoheterotrophic supply with nutrients. Developing the first leaves, photosynthesis becomes possible. It can be assumed that the C3 mechanism of photosynthesis is still dominant, since temperatures are moderate in spring and there is enough water. And the plant needs to grow quickly, to build up biomass. Here the C3 photosynthesis has a clear advantage.

The budding plant is still growing, the leaves reach their optimal capacity for C3 photosynthesis.

Beginning with flowering the leaves begin to wither. So the flower starts its additional CAM photosynthesis and secures a sufficient supply with nutrients even under conditions of increasing heat and drought.

When the fruits ripe there is again a phase when biomass has to be added. But the capacity of photosynthesis is decreasing when the flower is withering. Now the role of the mycoheterotrophic supply with nutrients might become more important again.

Sundheimer Orchideentagung 2: Florale Photosynthese bei Ophrys

Warum sind Ophrys-Blüten mit einer Pigmentstörung gelblich-grün und nicht weiß wie bei Orchis, Dactylorhiza oder anderen Gattungen? Der Antwort auf diese Frage bin ich auf der Orchideentagung in Sundheim nachgegangen, in einem Vortrag mit dem Titel: Die Ophrys-Blüte – mehr als eine Einladung zur Pseudokopulation.

Ophrys holoserica
Ophrys holoserica

Meine These:  Die Lippen aller Ophrys-Blüten sind grün – wir können das aber meist nicht sehen, weil das Blattgrün in den Lippen vom Anthocyanin überdeckt wird. Erst wenn die Anthocyanin-Produktion gestört ist, wird in der Ophrys-Lippe das Chlorophyll sichtbar, zusammen mit ebenfalls meist enthaltenen gelben Pigmenten. Nur die Lippenzeichnung ist frei von Pigmenten, sie erscheint bei einem Ausfall der Anthocyanin-Bildung meist weiß. Aber selbst in den unteren Schichten des bläulich schimmernden Mals von Ophrys speculum haben Forscher nachgewiesen, dass sich dort Chloroplasten befinden, also Zellpartikel mit Chlorophyll. Die bläuliche Farbe resultiert aus den Vakuolen der Epidermis, die mit Cyanidin-Pigmenten gefüllt sind, während der bräunliche übrige Teil der Lippe zusätzlich auch Delphinidin und Quercetin-Pigmente sowie Anthocyanine enthält.

Bei den Ophrys-Indidviduen mit einem Ausfall der Pigment-Bildung wäre die Bezeichnung weiß blühend oder albiflora fehl am Platz. Besser passt der Begriff hypochrom in der Bedeutung einer unterentwickelten Farbpigmentausprägung.

Belege dafür gibt es bei mehr als 20 Ophrys-Arten.

Eine ganze Population von Ragwurz-Pflanzen ohne Anthocyanin in der Lippe gibt es bei Basel von Ophrys apifera. Diese Pflanzen sind auch als Basiliensis-Varietät beschrieben.

Anthocyanin dient auch als Sonnenschutz, es hat die Eigenschaft, schädliche Lichtenergie wie etwa die UV-Strahlung zu absorbieren. Die wasserlöslichen Anthocyanin-Pigmente befinden sich in den Vakuolen der Pflanzenzelle, die auch Wasser und Nährstoffe enthalten. Besonders die Pflanzen in Südeuropa sind auf die Sonnenschutz-Funktion des Pigments angewiesen.

Im allgemeinen haben die Petalen höherer Blütenpflanzen kein Chlorophyll. Das Gewebe ihrer Blüten und Früchte enthält keine Chloroplasten – also Zellpartikel, die Chlorophyll enthalten und deswegen grün gefärbt sind – sondern Chromoplasten. Diese enthalten kein Chlorophyll, sondern zum Beispiel Carotenoide: gelbe, orangene oder rote Farbpigmente.

Nur im Knospenstadium haben einige Blütenpflanzen noch höhere Anteile von Chloroplasten – diese entwickeln sich dann zu Chromoplasten oder farblosen Leukoplasten mit der Funktion, Eiweiß oder Stärke zu speichern – hierzu gibt es einen interessanten Beitrag von Kevin Pyke und Anton Page. Die gleiche Umwandlung lässt sich beim Reifen von Tomaten beobachten – die zunächst grüne Frucht hat noch viele Chloroplasten mit Chlorophyll, die sich dann zu Chromoplasten mit dem roten Pigment Lycopin umwandeln.

In Laubblättern enthält eine Blattzelle etwa 20 bis 50 durch Chlorophyll grün gefärbte Chloroplaste. Sie sind mit Stroma gefüllt, das auch das Enzym Ribulose-Bisphosphat-Carboxylase/Oxygenase (RuBisCo) enthält. Dieses leistet im Zusammenwirken mit Wasser und Sonnenlicht einen entscheidenden Beitrag für die Umwandlung von Kohlendioxid in Glucose: Aus CO2 und H2O wird C6H12O6.

Forschungen haben gezeigt, dass auch Orchideen sonniger Wiesenstandorte im Mittelmeerraum zumindest als partiell mykoheterotroph zu betrachten sind, also einen Teil ihrer Nährstoffversorgung von Pilzen erhalten. Weil Pilze den für die Enzymbildung elementaren Stickstoff im Boden sehr viel besser lösen können als höher entwickelte Pflanzen, sind mykoheterotrophe Orchideen besser mit Stickstoff versorgt als Pflanzen anderer Familien ohne Nährstoffversorgung durch Pilze. Die einzelnen Orchideenarten verbinden sich mit jeweils unterschiedlichen Pilzen, bei vielen Orchideen lassen sich Bodenpilze der Gattung Tulasnella als Versorger feststellen.

Zusätzlich aber nutzen Ophrys-Orchideen auch den Umstand, dass Chloroplasten im Blütengewebe erhalten sind, so dass hier weiter Photosynthese stattfinden kann. Einige Ophrys-Arten haben auch ein intensiv grünes Perigon – dort sind dann anders als in der Lippe keine Anthocyanine enthalten, die das Chlorophyll überdecken würden.

Dabei nutzen Ophrys-Blüten, so ist zu vermuten, den Crassulaceen-Säurestoffwechsel, nach der englischen Bezeichnung Crassulacean Acid Metabolism als CAM abgekürzt. Das ist ein nach der Familie der Dickblattgewächse, der Crassulaceae, benannter Mechanismus der Photosynthese, der besonders an heiße und trockene Standorte angepasst ist.

Der Vorteil dieser CAM-Photosynthese gegenüber der gängigen C3-Photosynthese: Die Pflanzenzellen nehmen Kohlendioxid nachts auf. Die Spaltöffnungen im Pflanzengewebe sind dann geöffnet. Und in der Tageshitze können sie geschlossen bleiben, so dass die Pflanze vor Austrocknung geschützt ist. Das nachts aufgenommene CO2 wird in den Vakuolen der Zelle in Form von Äpfelsäure gespeichert und tagsüber mit Lichtenergie in Kohlendioxid und Sauerstoff umgewandelt. Die CAM-Photosynthese begnügt sich im Vergleich zur C3-Photosynthese mit weniger als einem Fünftel der benötigten Wassermenge. Somit kann die Pflanze in Trockenzeiten gut überleben, bleibt vor Stress wegen Wassermangels geschützt.

cam_photosynthese_nacht

Einfaches RGB

Es gibt auch Pflanzen mit fakultativer CAM-Photosynthese – hier wird der Wassersparmodus nur bei sommerlicher Trockenheit eingeschaltet. Im Frühling setzen die knospenden Pflanzen dann noch die C3-Photosynthese ein. Denn CAM hat neben dem Vorteil des geringeren Wasserverbrauchs einen großen Nachteil: Die Produktion von Biomasse fällt deutlich geringer aus. CAM-Pflanzen wachsen sehr viel langsamer als C3-Pflanzen.

Orchideen mit dünnen Laubblättern haben in der Regel eine C3-Photosynthese – dazu gehören etwa die Gattungen Orchis, Dactylorhiza, Anacamptis und Neotinea. Solche mit dicken Blättern wie die tropischen Gattungen Phalaenopsis, Cymbidium oder Cattleya praktizieren die CAM-Photosynthese, also den Crassulaceen-Säurestoffwechsel.

Da die CAM-Pflanzen das nachts aufgenommene CO2 für die tagsüber ablaufende Photosynthese speichern müssen, haben sie oft stark vergrößerte Vakuolen. Dicke Blätter können mehr organische Säure speichern, die das CO2 über Nacht konserviert. Es könnte sein, dass dies auch bei der Blütenblatt-Photosynthese von Ophrys der Fall ist. Ein Indiz dafür ist die verdickte, fleischige Ophrys-Lippe – und diese Form kommt wiederum der Einladung an die Bestäuber zur Pseudokopulation entgegen. Auch die oft geringe Wuchshöhe ist ein Indiz dafür, dass Ophrys-Arten zumindest fakultative CAM-Pflanzen sind – es wird weniger Biomasse aufgebaut.

Ein Vorteil der floralen Photosynthese ist die ideale Position der Blüten zum Sonnenlicht hin. Die höhere Aufnahme von Lichtenergie ermöglicht eine höhere Kapazität zum Speichern von CO2. Auch wenn es noch keine eingehenden Forschungen dazu gibt, sprechen viele Hinweise dafür, dass insbesondere die mediterranen Ophrys-Arten eine florale Photosynthese beherrschen. Mit dem zumindest fakultativen CAM-Stoffwechsel verfügen sie über die Fähigkeit, auch in trockenem Klima, auf Felsgrund und mit früh welkenden Laubblättern zu bestehen. Die Entwicklung der Ophrys-Lippe ist damit gleich zwei funktionalen Zielen gefolgt, der Anpassung an einen Bestäuber und der Befähigung zu floraler Photosynthese.

Damit zeichnet sich im Vegetationszyklus der Ophrys-Pflanze eine idealtypische Abfolge von Phasen ab, die jeweils an spezifische Umweltbedingungen und biologische Anforderungen angepasst sind. Für einzelne Arten und Standorte gibt es sicherlich Unterschiede, generalisierend lassen sich aber diese Phasen unterscheiden:

ophrys_phasen

Der Keimling entwickelt sich aus der mykoheterotrophen Nahrungsversorgung und erhält mit der Ausbildung seiner ersten Blattrosette die Befähigung zur Photosynthese. Es ist anzunehmen, dass hier der C3-Mechanismus der Photosynthese vorherrscht, im Frühling sind die Temperaturen noch gemäßigt und es steht genug Feuchtigkeit zur Verfügung. Auch geht es hier für die Pflanze vor allem um schnelles Wachstum, den zügigen Aufbau von Biomasse. Dabei ist die C3-Photosynthese klar im Vorteil.

Die knospende Pflanze ist weiter auf Wachstum angelegt, die Blätter erreichen ihre optimale Kapazität zur C3-Photosynthese.

Mit der Blüte beginnen die Laubblätter zu welken, ergänzend übernimmt die Blüte die CAM-Photosynthese, und sichert so trotz zunehmener Hitze und Trockenheit eine ausreichende Nahrungsversorgung.

In der Fruchtreife ist mit dem Anschwellen der Fruchtknoten noch einmal der Aufbau von Biomasse erforderlich. Mit dem Abblühen verringert sich die Kapazität der Photosynthese. Möglicherweise gewinnt jetzt auch die mykoheterotrophe Nahrungsversorgung wieder an Bedeutung.

 

orchids conference in Sundheim 1: From Odenwald to Iran

The 20th conference of orchid experts in Kehl-Sundheim invited its participants to a long journey: The lectures had a broad range from the German regions of Odenwald and the upper valley of the Fils to Austria and Iran.

Orchideentagung Sundheim
Orchids Conference Sundheim

The trip report form Iran opened the conference: Jean-Marc Haas showed impressive pictures of orchids, tulips and Fritillaria. Markus Sonnberger from Heiligkreuzsteinach presented a botanical profile of the Odenwald. Among orchids, Himantoglossum hircinum and Epipactis helleborine are increasingly present, while other species are declining: Dactylorhiza fuchsii, Dactylorhiza majalis and Orchis mascula. In this region there are also growing Cephalanthera longifolia, Orchis militaris, Neottia ovata, Neotinea ustulata and Platanthera bifolia. Markus Sonnberger also showed botanical rarities of the region as Buxbaumia viridis or Stellaria neglecta.

H. Moeller showed impressive pictures of potential pollinators of Neottia ovata, among them wasps of different sizes. He observed them at short distance with his Lumix compact camera.

Norbert Griebl lectured about the “finest orchid regions of Austria” some albiflora forms as Gymnadenia conopsea in white and greenish, at the Golzentipp in the Gailtal Alps, or a white flowering Anacamptis coriophora in the valley of Lobau.

Prof. Hannes Paulus from Vienna presented the latest results of his research about the pseudo copulation of Ophrys species. He criticized a “unprecise use of the subspecies term in botany, that’s a big mess”. From his view it’s not correct to describe Ophrys illyrica und Ophrys tommasinii as subspecies of Ophrys sphegodes – “both have a different size and different pollinators, they are different species”.

Helmut Zelesny viewed white flowering forms of Orchis militaris, Gymnadenia conopsea and Neottia nidus-avis in the upper valley of the Fils near Unterboehringen as “freaks of nature, without scientific value”. But this does not explain why white flowering forms of some species and in some regions are more common than in other cases. Zelesny also showed the photo of a hybrid of a white flowering Orchis mascula and Orchis pallens.

Sundheimer Orchideentagung 1: Vom Odenwald bis zum Iran

Die zum 20. Mal ausgerichtete Orchideentagung in Kehl-Sundheim hat ihre Teilnehmer auf eine weite Reise geführt: Der Reigen der Vorträge spannte sich über den Odenwald, das Obere Filstal in der Schwäbischen Alb und Österreich bis zum Iran.

Orchideentagung Sundheim
Orchideentagung Sundheim

Der Iran-Reisebericht eröffnete die Konferenz: Jean-Marc Haas zeigte eindrucksvolle Aufnahmen von Orchideen, Tulpen und Fritillarien. Markus Sonnberger aus Heiligkreuzsteinach präsentierte ein botanisches Porträt des Odenwalds. Von der Orchideenflora breiten sich Himantoglossum hircinum und Epipactis helleborine aus, während sich die Bestände anderer Arten rückläufig entwickeln: Dactylorhiza fuchsii, Dactylorhiza majalis und Orchis mascula. Außerdem sind im Odenwald auch Cephalanthera longifolia, Orchis militaris, Neottia ovata, Neotinea ustulata und Platanthera bifolia zu finden. Markus Sonnberger präsentierte auch botanische Besonderheiten der Region wie das Koboldmoos (Buxbaumia viridis) oder die Vogelsternmiere (Stellaria neglecta).

Zur Neottia ovata stellte H. Möller eindrucksvolle Aufnahmen von zumindest potenziellen Bestäubern vor, darunter etliche Wespen unterschiedlicher Größe. Er lauerte ihnen in kurzer Distanz mit einer Lumix-Kompaktkamera auf.

Norbert Griebl zeigte in seinem Reigen durch “die schönsten Orchideenziele Österreichs” auch Albiflora-Formen, etwa von Gymnadenia conopsea in weiß und grünlich blühend, am Golzentipp in den Gailtaler Alpen, oder eine weiß blühende Anacamptis coriophora in der Auenlandschaft der Lobau.

Prof. Hannes Paulus aus Wien stellte neue Ergebnisse seiner Forschungen zur Pseudokopulation bei Ophrys-Arten vor. Dabei kritisierte er auch eine “unscharfe Verwendung des Subspezies-Begriffs in der Botanik, das ist ein großes Ärgernis”. So sei es etwa nicht gerechtfertigt, Ophrys illyrica und Ophrys tommasinii als Unterarten von Ophrys sphegodes zu führen – “beide sind unterschiedlich groß, haben unterschiedliche Bestäuber – das sind verschiedene Arten”.

Als “Launen der Natur, ohne wissenschaftliche Bedeutung” bezeichnete Helmut Zelesny weiß blühende Formen von Orchis militaris, Gymnadenia conopsea und  Neottia nidus-avis im Oberen Filstal bei Unterböhringen. Allerdings erklärt dieser Ansatz nicht, warum weiß blühende Formen bei einigen Arten und in bestimmten Regionen gehäuft auftreten. Zelesny zeigte auch das Foto einer Hybride aus einer weiß blühenden Orchis mascula und Orchis pallens.

a biased learning experience – how pollinators react to color

Bees and other insects are looking for floral rewards, such as nectar and pollen. And they learn to associate a variety of floral cues, including color with such rewards, as three researchers of the University of Arizona – Avery L. Russell, China Rae Newman and Daniel R. Papaj – explain in an article published this year in Evolutionary Ecology (DOI 10.1007/s10682-016-9848-1). Yet, we don’t know much about the ways how insects are learning.

Andrea spec. with Orchis simia
Andrea spec. with Orchis simia

The Arizona project looks for plants with different colors due to a single loss-of-function mutation blocking the production of floral pigments. Similar to the albiflora orchids presented on this web site, such color polymorphisms may also occur in other plant families. The authors explain that those are quite common, for example with Geranium thunbergii, Antennaria dioica or Aquilegia coerulea – a relative to the European Aquilegia vulgaris.

Aquilegia vulgaris
Aquilegia vulgaris

There study analyzes the behavior of pollinators of hypochromic Solanum tridynamum in an experimental arrangement. It could be shown that initially naïve bees had no preference for purple- or white-flowered plants. The same was the case when the researchers prevented the release of pollen – this was done by sealing the anther pore with glue. But bees with a rewarding experience on plants with purple corollas expressed strong, significant landing preferences for morphs with purple corollas relative to morphs with white corollas. This preference to the rewarding color was much weaker in the case of rewarding flowers with white corollas. The authors came to the conclusion: bees showed a bias in terms of how experience shaped preference: experience with the purple morph had a greater effect on preference than experience with the white morph.

The reason for this bias in learning might be, according to the Arizona researchers, that purple flowers exhibit much greater chromatic contrast, so the hypochromic Solanum tridynamum is likely even less discriminable in real-world foraging conditions. Such biases, the authors conclude, might curtail the success of such morphs and perhaps even contribute to the low frequencies in which they occur. The Arizona case study titled White flowers finish last: pollen-foraging bumble bees show biased learning in a floral color polymorphism is great research – there should be others to follow to see if pigmented flowers have an a priori advantage over hypochromic flowers.

einseitige Lernerfahrung: wie Bienen auf Blütenfarbe reagieren

Bienen und andere Insekten suchen Blüten auf, um Nahrung zu finden wie Nektar oder Pollen. Und sie lernen, eine Vielzahl von Blütenmerkmalen mit solchen Belohnungen zu verbinden, wie drei Forscher an der Universität von Arizona erklären: Avery L. Russell, China Rae Newman und Daniel R. Papas haben dazu in diesem Jahr einen Aufsatz in der Zeitschrift Evolutionary  Ecology (DOI 10.1007/s10682-016-9848-1) veröffentlicht. Bislang wissen wir nicht viel darüber, wie Insekten lernen.

Andrea spec. with Orchis simia
Andrea spec. mit Orchis simia

Das Arizona-Projekt interessiert sich für Pflanzenarten mit Blüten in verschiedenen Farben, aufgrund einer Mutation, bei der die Produktion von Blütenpigmenten blockiert wird. Ähnlich wie bei den auf dieser Web-Site gezeigten Albflora-Orchideen können solche Farbe-Polymorphismen auch in anderen Pflanzenfamilien auftreten. Die Autoren erklären, dass diese recht häufig auftreten und nennen als Beispiele Geranium thunbergii, Antennaria dioica (Katzenpfötchen) oder Aquilegia coerulea (Rocky-Mountains-Akelei), eine Verwandte unserer Akelei in Europa.

Aquilegia vulgaris
Aquilegia vulgaris

Ihre Studie analysiert das Verhalten von Bestäubern bei einem purpurfarbenen und weiß blühenden Nachtschattengewächs (Solanum tridynamum), wobei sie eine Experimentalumgebung konstruierten. Damit konnte gezeigt werden, dass anfänglich naive Bienen ohne Lernerfahrung keine Präferenz für purpurn oder weiß blühende Pflanzen hatten. Dies war auch der Fall, als die Forscher die Entnahme von Pollen verhinderten – indem sie den Staubbeutel mit Klebstoff verschlossen. Aber Bienen mit einer lohnenden Erfahrung bei purpurnen Blüten zeigten eine signifikant starke Präferenz, auf Morphen mit purpurnen Blütenblättern zu landen, verglichen zu Morphen mit weißen Blütenblättern. jedoch war diese Präferenz für eine lohnende Farbe bei weißen Blüten mit einer lohnenden Erfahrung viel schwächer aussgeprägt. Die Autoren kommen so zur Schlussfolgerung: Bienen haben eine einseitige Neigung in der Frage, wie Erfahrung Präferenzen formt: Die Erfahrung mit dem purpurnen Morph hatte eine größere Wirkung als die Erfahrung mit dem weißen Morph.

Der Grund für diese einseitige Lernerfahrung könnte nach Einschätzung der Forscher aus Arizona darin liegen, dass purpurne Blüten einen viel größeren Farbkontrast zur Umgebung aufweisen. Daher ist das hypochrome Solanum tridynamum bei der Nahrungssuche unter natürlichen Bedingungen wahrscheinlich noch weniger leicht erkennbar. Diese einseitige Erfahrung, so schließen die Autoren, könnte den Erfolg solcher Morphen beschränken und vielleicht sogar dazu beitragen, dass sie so selten sind. Die Fallstudie aus Arizona mit dem Titel White flowers finish last: pollen-foraging bumble bees show biased learning in a floral color polymorphism ist großartige Forschung – aber es sollten weitere Arbeiten folgen, um zu sehen, ob Blüten mit Farbpigmenten von vornherein einen Vorteil gegenüber hypochromen Blüten haben.